skeletal muscle hypertrophy is regulated via akt-mtor pathway
PAG Title | skeletal muscle hypertrophy is regulated via akt-mtor pathway |
PAG ID | WAG001461 |
Type | P |
Source Link | BioCarta |
Publication Reference | NA |
PAG Description | Skeletal muscle atrophies with disuse while with increased use and increased load skeletal muscle exhibits hypertrophy, with an increase in the size of existing muscle fibers. One sigling pathway involved in regulating skeletal muscle atrophy and hypertrophy is the AKT/mTOR pathway (see mTOR pathway). The mTOR pathway activity increases in response to muscle activity during hypertrophy and decreases in activity during atrophy. Blocking this pathway genetically or with the mTOR inhibitor rapamycin blocks hypertrophy and genetic activation of the pathway induces hypertrophy. One agent that promotes muscle hypertrophy is the growth factor IGF-1. IGF-1 activates AKT, GSK-3beta and mTOR to promote hypertrophy. In contrast, the calcineurin pathway is not involved in hypertrophy and is down-regulated by agents such as IGF-1 that promote hypertrophy. Calcineurin may modulate other aspects of muscle function such as the development of slow muscle fibers through transcriptiol regulation. These pathways lead to regulation of protein translation, with increased translation apparently acting as a key regulatory point in skeletal muscle hypertrophy. Agents such as IGF-1 that stimulate skeletal muscle hypertrophy may provide treatments for muscle atrophy and wasting. |
Species | Homo sapiens |
Quality Metric Scores | nCoCo Score: 1,638 |
Information Content | Rich |
Other IDs | |
Base PAG ID | WAG001461 |
Human Phenotyte Annotation | |
Curator | PAGER curation team |
Curator Contact | PAGER-contact@googlegroups.com |
Something else? Please send us an email!